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HUMAN VS. MACHINE CHRONICLES

Google AlphaGo vs. Lee Sedol

(1920 CPUs, 280 GPUs)
~300000W

IBM Watson vs. Brad Ritter &
IBM Deep Blue VS. Ken Jennings

Kasparov 90 Power 750 Express servers

IBM RS/6000 32-node (4 8-core CPUs)
server (Power2 + 8 ~200000W
dedicated chips)

~15000 W




VVHAT ARE THE ISSUES WITH DLN?

» Requires massive amount of training data

® |Learn with much less data

» Supervised learning
* Need for higher bio-fidelity

» Incremental/adaptive learning is difficult — catastrophic
forgetting
* Life-long learning

» Huge power consumption

* Event driven evaluation can help; Approximate hardware

» Well-suited for image, speech, text recognition..

* Need for cognitive systems to perform larger range of functions — not just
sensory processing, but also reasoning and decision making

» Can neuro-mimetic devices help?

®* von-Neumann architecture not suitable

Need for in-memory-computing, efficient neurons and synapses




Neuromorphic Computing: An Overview
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Explore neuromorphic computing
models inspired from hierarchical
layer arrangement and spiking
nature of brain networks

Deep Learnlng
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Bio-Inspired Computing and Learning Models

Spiking Networks Coupled Osculators Recurrent Networks

Synaptic Plasticity
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Leverage from latest development
in neuroscience on visual attention
to design energy efficient hardware

for deep learning neural networks

Design programmable and scalable
hardware fabrics and explore
circuit optimizations for achieving
high connectivity

Investigate device physics to
mimic “neuron/ synapse”
functionalities

STUDENTS/Post-doc: Abhronil Sengupta, Priyadarshini Panda, Syed Shakib, Gopal Srinivasan, Chamika Liyanagendr

Spatial Attention Networks in the brain

Neuroscience studies
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Feature selective

Conditional Learning elimination classification
Mapping to design and circuit optimizations

Inhibitary Layer

Scalable architecture design addressing the i issue of high
interconnectivity between neural units
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Spintronic Neurons/Synapses Crossbar Architecture

-~ Programming Current

-~ Spike Current
w1 W2 s

Input
voltages V1
wu M W By

P79

LVawy EVawg LVywa

Programmable
memristor/
PCM devices

§

Experiments & Analysis from Neuroscience

Bing Han, Jason Allred, Parami Wijesinghe, Ayush Ankit, Maryam Parsa, Shuhan Chen and others...




Cognitive Computing
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Device/Circuit/Algorithm Co-Design: Spin/ANN

Top-Down Perspective

e ] investigate brain-inspired b S
: computing models to provide  memorane i~
algorithm-level matching to potenta ----------- e
a1 underlying device physics Presynapic
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Post-neuron spikes

Device-Circuit-Algorithm co-simulation framework used to generate behavioral model

Bottom-Up Perspective

for system-level simulations of neuromorphic systems

System Level Solution
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SPIKING NEURAL NETWORKS



Spiking Neuron Dynamics

Postsynaptic neuron membrane
potential V given by Leaky-Integrate-
Fire model as follows:

Vinem
T di — _Vmem + Rmem ; Ipost,i

= -'gi"i'fi"

T denotes membrane time constant

\ —> Post-neuron spikes

Postsynéptic

membrane
potential eset o .
> fime
_ Refractory Period
Presynaptic
spike train
> fime

Postsynaptic neuron spikes when membrane potential crosses a certain threshold and gets reset



Spike Timing Dependent Plasticity: Example
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—— Weight Update Equations
05 Wi = wi' + Aw(t;) X Winar i =1,2,3
-50 0 50

Strength of the synapse should increase (decrease) as post and pre

Spike timing (ms
P g (ms) neurons appear to be temporally correlated (uncorrelated)

Bi and Poo, The Journal of Neuroscience, December 15, 1998.



Artificial Neural Networks: Simple Model

4 Artifical NN
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synapses lead to energy-efficient ANNs
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DEVICES: NEURONS, SYNAPSES, IN-
MEMORY COMPUTING



Building Primitives: Memory, Neurons,
Synapses
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Spin Transfer Torque Induced Domain Wall
Motion

Multi-domain magnets consists of a domain wall (DW) separating
regions with opposite magnetic polarizations

Domain wall can be moved in the direction of electron flow
MTJ resistance varies with domain wall position
Decoupled “write” and “read” current paths

Low current induced Ne'el domain wall motion can be achieved by spin-orbit
torque generated by spin-Hall effect from a heavy metal underlayer in
presence of DMI

~

WRITE -~ GND

/ a I WRITE

“Pinned Layer”

\‘I|\ i
DW

Universal device: Suitable for memory, neuron, synapse, interconnects



Core Computing Blocks
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SHE Induced DW Motion: Neuron

v

oD

AXON

Reference M'i'J

Neuron] MT)J out lour Neuron| MTJ
d !! E— l! IG IIN — @'
IN $— —4 GND IN +— ——GND
ﬁ- IIN *.
Input Spikes
Non-spiking Neuron IF Spiking Neuron

= Three terminal spintronic device acting as a neuron (with different degrees of
bio-fidelity) and synapse

= The neuron is interfaced with the “axon” circuit to generate a corresponding analog
output current with variation in the input current / Integrate-Fire “spiking” neuron can
be implemented using a similar device structure where the MTJ is located at the
extreme edge of the FM.

= Synapse, acting as the memory element, encodes the weight in its conductance
value which is determined by the domain wall position

Sengupta, Roy, TBioCAS’16; Sengupta, Roy, TCAS’ 16



Core Computing Blocks
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Self-learning in Spiking Neural Networks
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- Spike-Timing Dependent Plasticity

« Spintronic synapse in spiking neural networks exhibits spike timing dependent
plasticity observed in biological synapses

* Programming current flowing through heavy metal varies in a similar nature as STDP
curve

» Decoupled spike transmission and programming current paths assist online learning

« 48fJ energy consumption per synaptic event which is ~10-100x lower in
comparison to emerging devices like PCM




Network for Pattern Recognition

Input Poisson
Spike Train

Lateral Inhibition
Connections
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Input Images

(MNIST dataset) Excitatory Layer

Inhibitory Layer

Pattern recognition performed in a network of excitatory spiking neurons in
presence of lateral inhibition and homeostasis
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Energy Comparison — Spintronic Engine &
CMOS Baseline

m Spintronic SNeuE 2908X 2799X
Architecture ' |

1105Xx 1314X

204x 161X

N
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Energy Consumption
log10 scale
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Spintronic architecture achieves energy improvements of 204X — 2759X with respect
to SNeuE (CMOS baseline) across all benchmarks.

Spintronic crossbar enabled in-memory processing enables to overcome the memory
domination/bottlenecks in the CMOS engine.

Spintronic neurons interfaced with spintronic crossbar (SCA) allows energy-efficient inner-
product computations.



STOCHASTIC NEURAL NETWORKS:
SHE BASED MT)J




Spiking Neuron Membrane Potential

Biological Spiking Neuron

electrical signal

LIF Equation:
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The leaky fire and integrate can be approximated by an MTJ — the magnetization

dynamics mimics the leaky fire and integrate operation

Sengupta, Roy, Scientific Reports’16



Interconnected Crossbars for NNs
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SHE Based MTJ: Stochastic Neuron & Synapse

= Exploit the stochastic switching behavior of a mono-domain MTJ in the
presence of thermal noise — sigmoidal function

= Stochastic sigmoidal neuron

= Replaces multi-bit synapses with a stochastic single bit (binary) synapse.
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SHE-Based Switching: Experiments

E——— ]
26
[ [ <——R 7e11 Alm’
ol e
2_4'_ 100 Oe in-plane field
e 0.47 Ohms
'jz.z L
2.1} -5.3e11 A/gf v
o 20 11.0 ' -ol.s . ofo ' 015 ' 1lo
Anomalous Hall effect (AHE) in FM layer: Jo (107A/m’)
Hall resistances change abruptly when the ol _
magnetization switches in FM. gE==rrr =
Ta(5nm)/CoFeB(1.3nm)/MgO(1.5nm)/Ta(5 o [10msee pulse widh
nm) (bottom to top) Hall bar structure; S |
CoFeB shows PMA. 2
In-plane field H; applied g¥r
A current pulse group with changeable 20 |-
magnitude is sent through I+/-. Then N
resistance change is measured across V+/- B —_—

Height (mA)



Stochastic Binary Synapse

= Synaptic strength is updated based on the temporal g o
correlation between pre- and post-spike trains 128
3 E
= Synaptic learning is embedded in the switching L
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Spiking Neuromorphic Architecture with LT-
ST Synapses

= Crossbar arrangement of the
LT-ST synapses with CMOS
neurons

Vere_por
pRE_POT

VRESET

= The significant LT synapses
are driven by a higher read

[ |
784 inputs for 28x28 images
E< §<

>

: | .. .1 |

414
]
I
]
I
]
]
I
]
1
1
1
1
]
I
I
]
]
1
1
]
I
|
1
]
1
I

g |} 1 I\ /[lahAe— k& , voltage

sl | I :

:‘i « Excitatory neuronse WRITE_WL

qh, -===> Read (spike-transmission) current

- --==--> Write (programming) current during potentiation
L . « Inhibitory neurons e u N etWOI’k Of LT'ST Syn apseS

| Neurons in excltatory/ inhibitory layer | prOV|deS 5% Improvement |n

Prog. Energy = 10u ] Prog. Energy = 23uJ the classification accuracy

over one-bit synapses

4

= Under iso-accuracy
conditions, the LT-ST
synapses offer a 2X
reduction in the synaptic
write energy

~
o

[o)]
[9)]

[+
o

w
u

%Classification Accuracy

i @@ LT-ST Stochastic Synapse

One-Bit Stochastic Synapsi

5?00 150 200 250 300 350 400
Number of Excitatory Neurons



From Devices to Circuits and Systems
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! Neuromorphic Computmg
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Simulation Framework

SPIN-BASED NEUROMORPHIC ARCHITECTURES
Goal: Large-scale spin-based /'_“‘I{;;-..___.
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Convolutional Metworks Spiking Networks

SPINTRONIC NEURAL CIRCUITS
Goal; U Itra low-power spintronic clrcmts for neural networks
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SPIN DEVICES AS NEURONS AND SYNAPSES

Goal: Spin devices with neural and synaptic characteristjcs
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Goal: Device-to-architecture simulation framework to
evaluate the proposed spin devices, circuits, and architectures




Conclusions

= Other than memory, STT devices also show promise for
a class of computing models such as “brain-inspired
computing”, stochastic computing

= STT-devices as “neurons” and “synapses” for both ANN,
SNN show the possibility of large improvement in energy
compared to CMOS implementation



